当前位置: 首页 > 素材库 > 手抄报 > 学科 > 数学

数学勾股定理手抄报,漫画勾股定理手抄报

  • 数学
  • 2023-09-21

数学勾股定理手抄报?2、设计布局:在纸上绘制一个大标题,比如“勾股定理”。根据自己的想法和创意,决定手抄报的整体布局,可以考虑将内容分成几个部分,如定义、公式、图示、例子、历史和应用等。3、写入基本内容:使用彩色笔和铅笔,那么,数学勾股定理手抄报?一起来了解一下吧。

勾股定理的证明方法

图片可以借鉴一下小报吧的!

勾股定义

在任何一个直角三角形(RT△)中,两条直角边的长的平方和等于斜边长的平方,这就叫做勾股定理。即勾的平方加股的平方等于弦的平方。

勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”

勾股证明

作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形。姿纤碧把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

过点Q作QP∥BC,交AC于点P.

过点B作BM⊥PQ,垂足为M;再过点

F作FN⊥PQ,垂足为N.

∵ ∠BCA = 90°,QP∥BC,

∴ ∠MPC = 90°,

∵ BM⊥PQ,

∴ ∠BMP = 90°,

∴ BCPM是一个矩形,即∠MBC = 90°。

∵ ∠QBM + ∠MBA = ∠QBA = 90°,

∠ABC + ∠MBA = ∠MBC = 90°,

∴ ∠QBM = ∠ABC,

又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,

∴ RtΔBMQ ≌ RtΔBCA.

同理可证RtΔQNF ≌ RtΔAEF.即A2+B2=C2

勾股例题

例1、已知:∠ABD=∠C=90°,AC=BC,∠DAB=30°,AD=8,求BC的长.

解析 先在Rt△ABD中,求出AB,继而在Rt△ACB中求出BC.

解 Rt△ABD中,

∵∠ABD=90°,∠DAB=30°,

由勾股定理知:

AB2=AD2-BD2=82-42=48.竖差

在△ABC中,∠C=90°,AC=BC.

∵AC2+BC2=AB2,

∴迹举2BC2=48,

∴BC2=24,

例2、 直角三角形斜边长为2,两直角边和为6,求此直角三角形面积.

解 设直角边为a、b,

∴a2+b2=4.

.

需注意的问题:

(1)勾股定理的前提是直角三角形;

(2)求解问题中常列方程或方程组来求解;

(3)已知直角三角形中两条边的长,求第三边的长,要弄清哪条是斜边,哪条是直角边,不能确定时,要分类讨论。

数学勾股定理手抄报简单又漂亮

勾股定理是一个基本的初等几搜迟何定理,直角三角形两直角边的平方和等于世启李斜边的平方。如果直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2,(a,b,c)叫做勾股数组。

勾股定理现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。古埃及人也应用过勾股定理。在中国,商朝的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角旁洞边平方之和。

数学勾股定理手抄报坚版

关于勾股定理

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”氏氏这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.

证明方法:

先拿四个一样的直角三角形。

数学勾股定理手抄报内容

关于勾股定理

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.拆姿衡这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件册漏上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.

证明方法:

先拿四个一样的直角三角形。

勾股定理发展史

(一)数学勾股定理,又称勾股数学,是数学中非常重要的定理,它是一条关于直角三角形边长之间关系的定理,其证明可以追溯到脊卜中国古代的《周髀算经》和希腊古代的毕达哥拉斯学派。勾股定理的表述为:直角三角形斜边的平方等于直角边的平方和。即:c2 = a2 + b2其尺差中,c为斜边,a和b为直角边。下面是勾股定理手抄报的图片:![勾股定理手抄报图片](pic4.zhimg./v2-f02061a4c2537e9de38bcc7352c4d703_r.jpg)(二)勾股定理的证明有很多种方法,这里介绍一种简单的方法:假设有直角三角形,其中两个直角边的长度分别为a和b,斜边樱困穗的长度为c。们可以将直角三角形沿着斜边c分成两个小三角形,如下图所示:![勾股定理证明图片](pic4.zhimg./v2-a11ca26a89da6a06ebd6353724fbe555_r.jpg)对于三角形ABC,根据勾股定理可得:AC2 = AB2 + BC2另一方面,对于三角形ACD,根据勾股定理可得:AD2 = AC2 + CD2将AB2 + BC2代入AC2,即可得AD2 = AB2 + BC2 + CD2由于CD是直角边,所以CD2 = b2,代入上式,即可得:AD2 = AB2 + BC2 + b2同理,由于BC是直角边,所以BC2 = a2,代入上式,即可得:AD2 = AB2 + a2 + b2又因为AD = c,AB = a,所以可以得到勾股定理:c2 = a2 + b2(三)除了直角三角形外,勾股定理在平面几何中还可以应用于求解直角坐标系中两点之间的距离:对于直角坐标系中的两个点A(x1,y1)和B(x2,y2),它们的欧几里得距离可以表示为:AB = √((x2-x1)2 + (y2-y1)2)这个公式与勾股定理c2 = a2 + b2形式相同,只是应用的对象不同。

以上就是数学勾股定理手抄报的全部内容,勾股定理的证明方法手抄报如下:勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。勾股定理(又称商高定理。

猜你喜欢